华南理工考研(华南理工考研分数线2023)




华南理工考研,华南理工考研分数线2023

近日,以“Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography” 为题,华南理工大学张辉教授和阿卜杜拉国王科技大学(KAUST)韩宇教授的合作研究成果在

该研究成果针对现有原子分辨率低剂量成像技术的不足,将低剂量成像技术中的样品倾转和电子计量控制方法运用于叠层衍射,在几十纳米厚的多种沸石分子筛中实现了优于1 ?的横向分辨率和~6.6 nm的纵向分辨率。丰富的三维结构信息使深入探究氧空位分布、孔道分子构型和纳米畴界面结构等局域结构及成分特征成为可能。由于沸石分子筛是石油化工行业中最重要的固体催化剂之一,低剂量成像技术的突破将有助于更深入地探究其构效关系,加速催化剂的研发。

沸石分子筛在吸附、分离、催化等众多领域有着广泛应用,其性能深受局域结构和成分不均匀性的影响。实空间高分辨率成像技术如透射电子显微术(TEM)是揭示非均质局部结构的最直接的手段。但是由于对电子辐照的敏感性,沸石材料的TEM成像需要在较低的电子剂量下进行以避免结构损伤。

当前可用的各种低剂量TEM成像技术有明显的局限性。以新兴的在沸石成像领域取得巨大成功的iDPC-STEM技术为例,其仍然具有以下局限性:第一,只有当样品厚度在数个晶胞以内(< 10 nm),所得图像才较好地反应其真实结构,但如此薄的样品在真实材料中极难获得。随着样品厚度增加,不仅图像分辨率会显著下降,图像也变得偏离结构难以解释。第二,与其他各种传统TEM技术一样,iDPC-STEM在样品深度方向上不具备分辨能力。第三,iDPC-STEM要求会聚电子束精准聚焦在样品才能实现原子级别的分辨率。对于沸石这样较为敏感的材料,精准聚焦必须在极短的时间内完成,否则聚焦过程就会损伤样品结构。因此,获得高质量图像的成功率较低。

图1. 具有不同厚度的ZSM-5样品的iDPC-STEM成像与Ptychography成像

图2. 不同分子筛样品以及孔道吸附有机分子的成像

图3. ZSM-5中氧空位的三维分布

图4. MFI-MEL相界面原子结构成像

图5. 纵向分辨率

文章信息

https://www.science.org/doi/10.1126/science.adg3183

华南理工考研(华南理工考研分数线2023)

赞 (0)