等价无穷小有哪些,高数常见的等价无穷小有哪些




大家好,今天小编来为大家解答以下的问题,关于等价无穷小有哪些,高数常见的等价无穷小有哪些这个很多人还不知道,现在让我们一起来看看吧!

本文目录

  1. 常用等价无穷小
  2. 常用等价无穷小有哪些
  3. 与x等价无穷小的都有哪些
  4. 常见的等价无穷小有哪些
  5. 常用等价无穷小替换有哪些
  6. 一些常用的等价无穷小

一、常用等价无穷小

1、1)x趋向于0时:sinx~x;tanx~x;1-cosx~(1/2)x^2;arcsinx~x;arctanx~x;(e^x)-1~x;(a^x)-1~xIna(0

2、1);In(1+x)~x;(1+x)^a~ax+1;(x^m)+(x^n)~x^m(n>m>0);lim(1+x)^(1/x)=e;

3、2)n趋向于无穷大时:lim[n^(1/n)]=1;lim[a^(1/n)]=1(a>0);lim[1+1/n]^n=e;

4、3)在必要情况下,采用泰勒展开的高阶等价无穷小:sinx=x-(1/6)x^3+o(x^3);cosx=1-(x^2)/2!+(x^4)/4!+o(x^4);tanx=x+(1/3)x^3+o(x^3);arcsinx=x+(1/6)x^3+o(x^3);arctanx=x-(1/3)x^3+o(x^3);In(1+x)=x-(x^2)/2+(x^3)/3+o(x^3);e^x=1+x+(1/2)x^2+(1/6)x^3+o(x^3);(1+x)^a=1+ax+a(a-1)(x^2)/2+o(x^2);

二、常用等价无穷小有哪些

1、1)x趋向于0时:sinx~x;tanx~x;1-cosx~(1/2)x^2;arcsinx~x;arctanx~x;(e^x)-1~x;(a^x)-1~xIna(0

1);In(1+x)~x;(1+x)^a~ax+1;(x^m)+(x^n)~x^m(n>m>0);lim(1+x)^(1/x)=e;

2、1);In(1+x)~x;(1+x)^a~ax+1;(x^m)+(x^n)~x^m(n>m>0);lim(1+x)^(1/x)=e;

3、2)n趋向于无穷大时:lim[n^(1/n)]=1;lim[a^(1/n)]=1(a>0);lim[1+1/n]^n=e;

4、3)在必要情况下,采用泰勒展开的高阶等价无穷小:sinx=x-(1/6)x^3+o(x^3);cosx=1-(x^2)/2!+(x^4)/4!+o(x^4);tanx=x+(1/3)x^3+o(x^3);arcsinx=x+(1/6)x^3+o(x^3);arctanx=x-(1/3)x^3+o(x^3);In(1+x)=x-(x^2)/2+(x^3)/3+o(x^3);e^x=1+x+(1/2)x^2+(1/6)x^3+o(x^3);(1+x)^a=1+ax+a(a-1)(x^2)/2+o(x^2);

三、与x等价无穷小的都有哪些

1、sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。

2、等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。

四、常见的等价无穷小有哪些

1、1)x趋向于0时:sinx~x;tanx~x;1-cosx~(1/2)x^2;arcsinx~x;arctanx~x;(e^x)-1~x;(a^x)-1~xIna(0<a<1或a>1);In(1+x)~x;(1+x)^a~ax+1;(x^m)+(x^n)~x^m(n>m>0);lim(1+x)^(1/x)=e;

2、2)n趋向于无穷大时:lim[n^(1/n)]=1;lim[a^(1/n)]=1(a>0);lim[1+1/n]^n=e;

3、3)在必要情况下,采用泰勒展开的高阶等价无穷小:sinx=x-(1/6)x^3+o(x^3);cosx=1-(x^2)/2!+(x^4)/4!+o(x^4);tanx=x+(1/3)x^3+o(x^3);arcsinx=x+(1/6)x^3+o(x^3);arctanx=x-(1/3)x^3+o(x^3);In(1+x)=x-(x^2)/2+(x^3)/3+o(x^3);e^x=1+x+(1/2)x^2+(1/6)x^3+o(x^3);(1+x)^a=1+ax+a(a-1)(x^2)/2+o(x^2);

五、常用等价无穷小替换有哪些

5、1-cosx~(1/2)*(x^2)~secx-1

等价无穷小是无穷小之间的一种关系,指的是在同一自变量

的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。

求极限时使用等价无穷小的条件:

1、被代换的量,在去极限的时候极限值为0。

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

:lim(x趋近于x0)f(x)/g(x)=0,则称当x趋近于x0时,f为g的高阶无穷小量,或称g为f的低阶无穷小量。

同阶无穷小量:lim(x趋近于x0)f(x)/g(x)=c(c不等于0),?和ɡ为x趋近于x0时的同阶无穷小量。

等价无穷小量:lim(x趋近于x0)f(x)/g(x)=1,则称?和ɡ是当x趋近于x0时的等价无穷小量,记做f(x)~g(x)[x趋近于x0]。

六、一些常用的等价无穷小

1、1)x趋向于0时:sinx~x;tanx~x;1-cosx~(1/2)x^2;arcsinx~x;arctanx~x;(e^x)-1~x;(a^x)-1~xIna(0

1);In(1+x)~x;(1+x)^a~ax+1;(x^m)+(x^n)~x^m(n>m>0);lim(1+x)^(1/x)=e;

2、1);In(1+x)~x;(1+x)^a~ax+1;(x^m)+(x^n)~x^m(n>m>0);lim(1+x)^(1/x)=e;

3、2)n趋向于无穷大时:lim[n^(1/n)]=1;lim[a^(1/n)]=1(a>0);lim[1+1/n]^n=e;

4、3)在必要情况下,采用泰勒展开的高阶等价无穷小:sinx=x-(1/6)x^3+o(x^3);cosx=1-(x^2)/2!+(x^4)/4!+o(x^4);tanx=x+(1/3)x^3+o(x^3);arcsinx=x+(1/6)x^3+o(x^3);arctanx=x-(1/3)x^3+o(x^3);In(1+x)=x-(x^2)/2+(x^3)/3+o(x^3);e^x=1+x+(1/2)x^2+(1/6)x^3+o(x^3);(1+x)^a=1+ax+a(a-1)(x^2)/2+o(x^2);

文章到此结束,如果本次分享的等价无穷小有哪些和高数常见的等价无穷小有哪些的问题解决了您的问题,那么我们由衷的感到高兴!

赞 (0)